题目内容
【题目】在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4),(1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.
(1)若抛物线经过点C、A、A′,求此抛物线的解析式;
(2)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时点M的坐标.
【答案】(1)y=﹣x2+3x+4;(2)M的坐标为(2,6).
【解析】
(1)由平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),可求得点A′的坐标,然后利用待定系数法即可求得经过点C、A、A′的抛物线的解析式;
(2)首先连接AA′,设直线AA′的解析式为:y=kx+b,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:(x,-x2+3x+4),继而可得△AMA′的面积,继而求得答案.
(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),
∴点A′的坐标为:(4,0),
∵点A、C的坐标分别是(0,4)、(﹣1,0),抛物线经过点C、A、A′,
设抛物线的解析式为:y=ax2+bx+c,
∴,解得:,
∴此抛物线的解析式为:y=﹣x2+3x+4;
(2)连接AA′,设直线AA′的解析式为:y=kx+b,
∴,解得:,
∴直线AA′的解析式为:y=﹣x+4,
设点M的坐标为:(x,﹣x2+3x+4),
则S△AMA′=×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,
∴当x=2时,△AMA′的面积最大,最大值S△AMA′=8,
∴M的坐标为:(2,6);
练习册系列答案
相关题目