题目内容
【题目】若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
A. B. C. D.
【答案】B
【解析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.
∵某定弦抛物线的对称轴为直线x=1,
∴该定弦抛物线过点(0,0)、(2,0),
∴该抛物线解析式为y=x(x-2)=x2-2x=(x-1)2-1.
将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x-1+2)2-1-3=(x+1)2-4.
当x=-3时,y=(x+1)2-4=0,
∴得到的新抛物线过点(-3,0).
故选:B.
练习册系列答案
相关题目
【题目】某商场用元购进两种新型护服台灯共盏,这两种台灯的进价、标价如下表所示:
价格 类型 | 型 | 型 |
进价(元/盏) | ||
标价(元/盏) |
(1)两种新型护眼台灯分别购进多少盏?
(2)若型护眼灯按标价的折出售,型护眼灯按标价的折出售,那么这批台灯全部售完后,商场共获利元,请求出表格中的值