题目内容
【题目】如图,正方形ABCD中,E为CD上一点,以AE为对称轴将△ADE翻折得到△AFE,延长EF交BC于G,若BG=CG,则sin∠EGC= .
【答案】
【解析】解:连接AG,
∵将△ADE翻折得到△AFE,
∴AB=AD=AF,AG=AG,∠D=∠B=∠AFG=90°,
在Rt△ABG与Rt△AFG中,
,
∴Rt△ABG≌Rt△AFG(HL),
BG=FG,
设CG为x,则GF=BG=x,
在Rt△EGC中,CG2+EC2=EG2,
即x2+CE2=(3x﹣CE)2,
解得,CE= x,
∴EG= x,
∴sin∠EGC= = .
所以答案是: .
【考点精析】掌握正方形的性质和翻折变换(折叠问题)是解答本题的根本,需要知道正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
【题目】白色污染( Whitepollution)是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓.为了让全校同学感受丢弃塑料袋对环境的影响,小彬随机抽取某小区户居民,记录了这些家庭年某个月丢弃塑料袋的数量(单位:个)
请根据上述数据,解答以下问题:
(1)小彬按“组距为”列出了如下的频数分布表(每组数据含最小值不含最大值),请将表中空缺的部分补充完整,并补全频数直方图;
分组 | 划记 | 频数 |
: | _______ | ________ |
: | ||
: | _______ | ________ |
: | ||
合计 | / |
(2)根据(1)中的直方图可以看出,这户居民家这个月丢弃塑料袋的个数在 组的家庭最多;(填分组序号)
(3)根据频数分布表,小彬又画出了如图所示的扇形统计图.请将统计图中各组占总数的百分比填在图中,并求出组对应的扇形圆心角的度数;
(4)若该小区共有户居民家庭,请你估计每月丢弃的塑料袋数量不小于个的家庭个数.