题目内容
【题目】在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(3,1),则点A2的坐标为__________,点A2 019的坐标为__________;若点A1的坐标为(a,b),对于任意的正整数n,点An均在x轴上方,则a,b应满足的条件为_______________.
【答案】(0,4) (-3,1) -1<a<1且0<b<2
【解析】
根据伴随点的定义,计算出A2的坐标,罗列出部分点A的坐标,根据点A的变化找出规律即可求出A2019的坐标;根据x轴上方的点的纵坐标大于0列出不等式组求解即可.
∵A1的坐标为(3,1),
∴A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),
…,
依此类推,每4个点为一个循环组依次循环,
∴2019÷4=504……3,
∴A2019的坐标为(-3,1).
(3)∵点A1的坐标为(a,b),
∴A2(-b+1,a+1),A3(-a,-b+2),A4(b-1,-a+1),A5(a,b),
…,
依此类推,每4个点为一个循环组依次循环,
∵对于任意的正整数n,点An均在x轴上方,
∴且
解得-1<a<1,0<b<2.
故答案为:(0,4);(-3,1);-1<a<1且0<b<2
【题目】为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了居民用电“阶梯价格”制度,下表是某市的电价标准(每月).
阶梯 | 一户居民每月用电量x(单位:度) | 电费价格(单位:元/度) |
一档 | 0<x≤180 | a |
二档 | 180<x≤280 | b |
三档 | x>280 | 0.82 |
(1)已知小华家四月份用电200度,缴纳电费105元;五月份用电230度,缴纳电费122.1元,请你根据以上数据,求出表格中a,b的值;
(2)六月份是用电高峰期,小华家计划六月份电费支出不超过208元,那么小华家六月份最多可用电多少度?
【题目】将正整数至按照一定规律排成下表:
…… |
记表示第行第个数,如表示第行第个数是.
(1)直接写出_______________,_______________;
(2)①如果,那么_________________,________;②用,表示__________;
(3)将表格中的个阴影格子看成一个整体并平移,所覆盖的个数之和能否等于.若能,求出这个数中的最小数,若不能说明理由.