题目内容
![](http://thumb.zyjl.cn/pic3/upload/images/201107/47/633c7ea8.png)
分析:两组对边分别平行的四边形是平行四边形,有一个角是90°的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,四个角都是直角,且四个边都相等的是正方形.
解答:解:A、因为DE∥CA,DF∥BA所以四边形AEDF是平行四边形.故本选项正确.
B、∠BAC=90°,四边形AEDF是平行四边形,所以四边形AEDF是矩形.故本选项正确.
C、因为AD平分∠BAC,所以AE=DE,又因为四边形AEDF是平行四边形,所以是菱形.故本选项正确.
D、如果AD⊥BC且AB=BC不能判定四边形AEDF是正方形,故本选项错误.
故选D.
B、∠BAC=90°,四边形AEDF是平行四边形,所以四边形AEDF是矩形.故本选项正确.
C、因为AD平分∠BAC,所以AE=DE,又因为四边形AEDF是平行四边形,所以是菱形.故本选项正确.
D、如果AD⊥BC且AB=BC不能判定四边形AEDF是正方形,故本选项错误.
故选D.
点评:本题考查了平行四边形的判定定理,矩形的判定定理,菱形的判定定理,和正方形的判定定理等知识点.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目