题目内容
【题目】《九章算术》“勾股”章的问题::“今有二人同所立,甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会.问甲、乙各行几何?”大意是说:如图,甲乙二人从A处同时出发,甲的速度与乙的速度之比为7:3,乙一直向东走,甲先向南走十步到达C处,后沿北偏东某方向走了一段距离后与乙在B处相遇,这时,甲乙各走了多远?
【答案】甲行24.5步,乙行10.5步.
【解析】甲乙同时出发二者速度比是7:3,设相遇时甲行走了7t,乙行走了3t根据二者的路程关系可列方程求解.
设经x秒二人在B处相遇,这时乙共行AB=3x,
甲共行AC+BC=7x,
∵AC=10,
∴BC=7x-10,
又∵∠A=90°,
∴BC2=AC2+AB2,
∴(7x-10)2=102+(3x)2,
解得:x1=0(舍去),x2=3.5,
∴AB=3x=10.5,
AC+BC=7x=24.5.
答:甲行24.5步,乙行10.5步.
练习册系列答案
相关题目