题目内容
如图,直线的解析式为,⊙是以坐标原点为圆心,半径为1的圆,点在轴上运动,过点且与直线平行(或重合)的直线与⊙有公共点,则点的横坐标为整数的点的个数有 ▲ 个.
5
∵直线l的解析式为y=x,
∴∠1=30°,
当过点P且与直线l平行的直线与圆O相切,且切点在第二象限时,如图所示,
此时直线PE与圆O相切,切点为点E,
∵直线l∥PE,∠1=30°,
∴∠EPO=30°,
在Rt△PEO中,OE=1,
可得OP=2OE=2,又P在x轴负半轴上,
∴此时P坐标为(-2,0);
当过点P且与直线l平行的直线与圆O相切,且切点在第四象限时,如图所示,
此时直线PF与圆O相切,切点为点F,
∵直线l∥PF,∠1=30°,
∴∠FPO=30°,
在Rt△PFO中,OF=1,
可得OP=2OF=2,又P在x轴正半轴上,
∴此时P的坐标为(2,0),
综上,满足题意的点P横坐标p的范围是-2≤p≤2,
则点P的横坐标为整数的点的个数有-2,-1,0,1,2,共5个.
∴∠1=30°,
当过点P且与直线l平行的直线与圆O相切,且切点在第二象限时,如图所示,
此时直线PE与圆O相切,切点为点E,
∵直线l∥PE,∠1=30°,
∴∠EPO=30°,
在Rt△PEO中,OE=1,
可得OP=2OE=2,又P在x轴负半轴上,
∴此时P坐标为(-2,0);
当过点P且与直线l平行的直线与圆O相切,且切点在第四象限时,如图所示,
此时直线PF与圆O相切,切点为点F,
∵直线l∥PF,∠1=30°,
∴∠FPO=30°,
在Rt△PFO中,OF=1,
可得OP=2OF=2,又P在x轴正半轴上,
∴此时P的坐标为(2,0),
综上,满足题意的点P横坐标p的范围是-2≤p≤2,
则点P的横坐标为整数的点的个数有-2,-1,0,1,2,共5个.
练习册系列答案
相关题目