题目内容
【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
(1)求证:BF=CD;
(2)连接BE,若BE⊥AF,∠F=60°,,求的长.
【答案】(1)证明见解析(2)4
【解析】试题分析:(1)已知四边形ABCD为平行四边形,根据平行四边形的性质可得AB=CD,AD∥BC,所以∠F=∠1.再由AF平分∠BAD,可得∠2=∠1.所以∠F=∠2,根据等腰三角形的判定可得AB=BF,即可得BF=CD;(2)先判定△BEF为Rt△,在Rt△BEF即可求解.
试题解析:
(1)证明:∵ 四边形ABCD为平行四边形,
∴ AB=CD,AD∥BC.
∴∠F=∠1.
又∵ AF平分∠BAD,
∴∠2=∠1.
∴∠F=∠2.
∴AB=BF.
∴BF=CD.
(2)解:∵AB=BF,∠F=60°,
∴△ABF为等边三角形.
∵BE⊥AF,∠F=60°,
∴∠BEF=90°,∠3=30°.
在Rt△BEF中,设,则,
∴.
∴.
∴AB=BF=4.
练习册系列答案
相关题目