题目内容
在Rt△ABC中,∠C =90°,sinA=,则cosB的值等于( )
A. B. C. D.
如图,在直角坐标系中阴影部分盖住的数可能是( )
A. (2,3) B. (-2,1) C. (-2,-2.5) D. (3,-2)
与最接近的整数是( )
A. 5 B. 6 C. 7 D. 8
计算:sin 30°·cos 45°+tan 60°=_____.
如图是拦水坝的横断面,斜坡的水平宽度为米,斜面坡度为,则斜坡的长为( )
A. 4米 B. 6米 C. 12米 D. 24米
“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按,,,四个等级进行统计,制成了如下不完整的统计图.(说明:级:8分—10分,级:7分—7.9分,级:6分—6.9分,级:1分—5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,对应的扇形的圆心角是_______度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在_______等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到级的学生有多少人?
如图,分别以等边三角形的每个顶点以圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为,则勒洛三角形的周长为__________.
已知:正方形ABCD的边长为厘米,对角线AC上的两个动点E,F,点E从点A、点F从点C同时出发,沿对角线以1厘米/秒的相同速度运动,过E作EH⊥AC交Rt△ACD的直角边于H;过F作FG⊥AC交Rt△ACD的直角边于G,连接HG,EB.设HE,EF,FG,GH围成的图形面积为,AE,EB,BA围成的图形面积为(这里规定:线段的面积为).E到达C,F到达A停止.若E的运动时间为x秒,解答下列问题:
(1)如图①,判断四边形EFGH是什么四边形,并证明;
(2)当0<x<8时,求x为何值时,;
(3)若是的和,试用x的代数式表示y.(图②为备用图)
若方程x4m-1+5y-3n-5=4是二元一次方程,则m+n=_________.