题目内容
【题目】如图,四边形中,,,.
(1)求证:;
(2)若,,,分别是,,,的中点,求证:线段与线段互相平分.
【答案】(1)见解析;(2)见解析
【解析】
(1)过点D作DM∥AC交BC的延长线于点M,由平行四边形的性质易得AC=DM=DB,∠DBC=∠M=∠ACB,由全等三角形判定定理及性质得出结论;
(2)连接EH,FH,FG,EG,E,F,G,H分别是AD,BC,DB,AC的中点,易得四边形HFGE为平行四边形,由平行四边形的性质及(1)结论得□HFGE为菱形,易得EF与GH互相垂直平分.
解:(1)证明:(1)过点D作DM∥AC交BC的延长线于点M,如图1,
∵AD∥CB,
∴四边形ADMC为平行四边形,
∴AC=DM=DB,∠DBC=∠M=∠ACB,
在△ACB和△DBC中,
,
∴△ACB≌△DBC(SAS),
∴AB=DC;
(2)连接EH,FH,FG,EG,如图2,
∵E,F,G,H分别是AD,BC,DB,AC的中点,
∴GE∥AB,且GE=AB,HF∥AB,且HF=AB,
∴GE∥HF,GE=HF,
∴四边形HFGE为平行四边形,
由(1)知,AB=DC,
∴GE=HE,
∴□HFGE为菱形,
∴EF与GH互相垂直平分.
练习册系列答案
相关题目