题目内容
【题目】在元旦来临之际,腾飞中学举行了隆重的庆祝活动,在校图书馆展开了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),“希望班”全班同学都参加了比赛,为了解这个班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2),根据图表中的信息解答下列各题:
(1)请求出“希望班”全班人数;
(2)请把折线统计图补充完整;
(3)欢欢和乐乐参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.
【答案】
(1)解:∵演讲人数12人,占25%,
∴九(2)全班人数为:12÷25%=48(人)
(2)解:∵国学诵读占50%,
∴国学诵读人数为:48×50%=24(人),
∴书法人数为:48﹣24﹣12﹣6=6(人);
补全折线统计图;
(3)解:分别用A,B,C,D表示书法、国学诵读、演讲、征文,
画树状图得:
∵共有16种等可能的结果,他们参加的比赛项目相同的有4种情况,
∴他们参加的比赛项目相同的概率为: =
【解析】(1)由演讲人数12人,占25%,即可求得九(2)全班人数;(2)首先求得书法与国学诵读人数,继而补全折线统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他们参加的比赛项目相同的情况,再利用概率公式求解即可求得答案.
【考点精析】利用扇形统计图和折线统计图对题目进行判断即可得到答案,需要熟知能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况;能清楚地反映事物的变化情况,但是不能清楚地表示出在总体中所占的百分比.
【题目】如图①,把∠α=60°的一个单独的菱形称作一个基本图形,将此基本图形不断的复制并平移,使得下一个菱形的一个顶点与前一个菱形的中线重合,这样得到图②,图③,…
(1)观察以上图形并完成下表:
图形名称 | 基本图形的个数 | 菱形的个数 |
图① | 1 | 1 |
图② | 2 | 3 |
图③ | 3 | 7 |
图④ | 4 | |
… | … | … |
猜想:在图(n)中,菱形的个数为(用含有n(n≥3)的代数式表示);
(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1 , 1),则x1=;第2017个基本图形的中心O2017的坐标为 .