题目内容
12、如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为
25
dm.分析:先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.
解答:
解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,
则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.
可设蚂蚁沿台阶面爬行到B点最短路程为xdm,
由勾股定理得:x2=202+[(2+3)×3]2=252,
解得x=25.
故答案为25.
解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,
则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.
可设蚂蚁沿台阶面爬行到B点最短路程为xdm,
由勾股定理得:x2=202+[(2+3)×3]2=252,
解得x=25.
故答案为25.
点评:本题考查了平面展开-最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.
练习册系列答案
相关题目
如图是一个三级台阶,它的每一级的长、宽、高分别为55寸、10寸和6寸,A和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是( )
A、71寸 | B、73寸 | C、100寸 | D、103寸 |