题目内容
【题目】教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10 ℃,待加热到100 ℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20 ℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:
(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;
(2)求出图中a的值;
(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40 ℃的开水,则他需要在什么时间段内接水?
【答案】(1)当0≤x≤8时,y=10x+20;当8<x≤a时,y=;(2)a=40;(3)要想喝到不低于40℃的开水,x需满足8≤x≤20,即李老师要在7:38到7:50之间接水.
【解析】试题分析:(1)当0≤x≤8时,设y=k1x+b,将(0,20),(8,100)的坐标分别代入y=k1x+b,即可求得k1、b的值,从而得一次函数的解析式;当8<x≤a时,设y=,将(8,100)的坐标代入y=,求得k2的值,即可得反比例函数的解析式;(2)把y=20代入反比例函数的解析式,即可求得a值;(3)把y=40代入反比例函数的解析式,求得对应x的值,根据想喝到不低于40 ℃的开水,结合函数图象求得x的取值范围,从而求得李老师接水的时间范围.
试题解析:
(1)当0≤x≤8时,设y=k1x+b,
将(0,20),(8,100)的坐标分别代入y=k1x+b,可求得k1=10,b=20.
∴当0≤x≤8时,y=10x+20.
当8<x≤a时,设y=,
将(8,100)的坐标代入y=,
得k2=800.
∴当8<x≤a时,y=.
综上,当0≤x≤8时,y=10x+20;
当8<x≤a时,y=.
(2)将y=20代入y=,
解得x=40,即a=40.
(3)当y=40时,x==20.
∴要想喝到不低于40 ℃的开水,x需满足8≤x≤20,即李老师要在7:38到7:50之间接水.