题目内容
【题目】如图,在线段AB上取一点C(非中点),分别以AC、BC为边在AB的同侧作等边△ACD和等边△BCE,连接AE交CD于F,连接BD交CE于G,AE和BD交于点H,则下列结论:①AE=DB;②不另外添加线,图中全等三角形只有1对;③若连接FG,则△CFG是等边三角形;④若连接CH,则CH平分∠FHG.其中正确的是________(填序号).
【答案】①③④
【解析】根据等边三角形的性质得到∠ACD=∠BCE=60°,证得∠BCD=∠ACE,推出△ACE≌△DCB(SAS),根据全等三角形的性质得到AE=BD,故①正确,∠CAE=∠CDG,证得∠ACD=∠DCE,推出△ACF≌△DCG,同理△BCG≌△ECF,故②错误;根据全等三角形的性质得到CF=CG,由∠FCG=60°,得到△FCG是等边三角形;故③正确,过C作CM⊥AE于M,CN⊥BD于N,推出△ACM≌△DCN,根据全等三角形的性质得到CM=CN,根据角平分线的性质得到CH平分∠FHG,故④正确.
∵△ACD与△BCE是等边三角形,∴∠ACD=∠BCE=60°,∴∠BCD=∠ACE.在△ACE和△DCB中,,∴△ACE≌△DCB(SAS),∴AE=BD,故①正确;
∵△ACE≌△DCB,∴∠CAE=∠CDG.
∵∠ACD=∠BCE=60°,∴∠DCE=60°,∴∠ACD=∠DCE.在△ACF与△DCG中,,∴△ACF≌△DCG,同理△BCG≌△ECF,故②错误;
∵△ACF≌△DCG,∴CF=CG.
∵∠FCG=60°,∴△FCG是等边三角形;故③正确;
过C作CM⊥AE于M,CN⊥BD于N,∴∠AMC=∠DNC=90°.在△ACM与△DNC中,,∴△ACM≌△DCN,∴CM=CN,∴CH平分∠FHG,故④正确.
故答案为:①③④.