题目内容

【题目】“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是( )

A.m<a<b<n B.a<m<n<b

C.a<m<b<n D.m<a<n<b

【答案】A

【解析】

试题分析:依题意画出函数y=(x﹣a)(x﹣b)图象草图,根据二次函数的增减性求解.

解:依题意,画出函数y=(x﹣a)(x﹣b)的图象,如图所示.

函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为a,b(a<b).

方程1﹣(x﹣a)(x﹣b)=0

转化为(x﹣a)(x﹣b)=1,

方程的两根是抛物线y=(x﹣a)(x﹣b)与直线y=1的两个交点.

由m<n,可知对称轴左侧交点横坐标为m,右侧为n.

由抛物线开口向上,则在对称轴左侧,y随x增大而减少,则有m<a;在对称轴右侧,y随x增大而增大,则有b<n.

综上所述,可知m<a<b<n.

故选:A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网