题目内容
【题目】(1)如图,∠A=∠D=90°,BE平分∠ABC,且点E是AD的中点,求证:BC=AB+CD.
(2)如图,△ACB和△ECD都是等边三角形,点A、D、E在同一直线上,连接BE.
①求证:AD=BE;
②求∠AEB的度数.
【答案】(1)证明见解析;(2)①证明见解析;②60°.
【解析】试题分析:(1)过点E作EF⊥BC于点F,可得∠EFB=∠A=90°,已知BE平分∠ABC,根据角平分线的定义可得∠ABE=∠FBE,利用AAS即可判定ΔABE≌ΔFBE,根据全等三角形的性质可得AE=EF,AB=BF,又由点E是AD的中点,可得AE=ED=EF,再利用HL判定RtΔCDE≌RtΔCFE,即可得CD=CF,所以BC=CF+BF=AB+CD;(2)①根据已知条件易证AC=BC,∠ACD=∠BCE,CD=CE,利用SAS证明△ACD≌△BCE,根据全等三角形的性质即可得AD=BE;②在等边△ECD中,∠CDE=∠CED=60°,即可得∠ADC=120°.
再由△ACD≌△BCE,根据全等三角形的对应边相等可得∠BEC=∠ADC=120°,所以∠AEB=∠BEC-∠CED=120°-60°=60°.
试题解析:
(1)过点E作EF⊥BC于点F,则∠EFB=∠A=90°
又∵BE平分∠ABC,∴∠ABE=∠FBE,∴ΔABE≌ΔFBE(AAS)
∴AE=EF,AB=BF,又点E是AD的中点, ∴AE=ED=EF
∴RtΔCDE≌RtΔCFE(HL)
∴CD=CF,∴BC=CF+BF=AB+CD
(2)①证明:∵△ACB和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°
又∵∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,
∴△ACD≌△BCE(SAS),∴AD=BE.
②在等边△ECD中,∠CDE=∠CED=60°,
∴∠ADC=120°.
∵△ACD≌△BCE,
∴∠BEC=∠ADC=120°,
∴∠AEB=∠BEC-∠CED=120°-60°=60°.
【题目】某天,一蔬菜经营户用120元钱按批发价从蔬菜批发市场买了西红柿和豆角共40kg,然后在市场上按零售价出售,西红柿和豆角当天的批发价和零售价如表所示:
品名 | 西红柿 | 豆角 |
批发价(单位:元/kg) | 2.4 | 3.2 |
零售价(单位:元/kg) | 3.8 | 5.2 |
如果西红柿和豆角全部以零售价售出,他当天卖这些西红柿和豆角赚了多少元钱?