题目内容
分析:要证GE是⊙O的切线,只要证明∠OEG=90°即可.
解答:
证明:(证法一)连接OE,DE,
∵CD是⊙O的直径,
∴∠AED=∠CED=90°,
∵G是AD的中点,
∴EG=
AD=DG,
∴∠1=∠2;
∵OE=OD,
∴∠3=∠4,
∴∠1+∠3=∠2+∠4,
∴∠OEG=∠ODG=90°,
故GE是⊙O的切线;
(证法二)连接OE,OG,
∵AG=GD,CO=OD,
∴OG∥AC,
∴∠1=∠2,∠3=∠4.
∵OC=OE,
∴∠2=∠4,
∴∠1=∠3.
又OE=OD,OG=OG,
∴△OEG≌△ODG,
∴∠OEG=∠ODG=90°,
∴GE是⊙O的切线.
∵CD是⊙O的直径,
∴∠AED=∠CED=90°,
∵G是AD的中点,
∴EG=
| 1 |
| 2 |
∴∠1=∠2;
∵OE=OD,
∴∠3=∠4,
∴∠1+∠3=∠2+∠4,
∴∠OEG=∠ODG=90°,
故GE是⊙O的切线;
∵AG=GD,CO=OD,
∴OG∥AC,
∴∠1=∠2,∠3=∠4.
∵OC=OE,
∴∠2=∠4,
∴∠1=∠3.
又OE=OD,OG=OG,
∴△OEG≌△ODG,
∴∠OEG=∠ODG=90°,
∴GE是⊙O的切线.
点评:本题考查切线的判定方法及圆周角定理运用.
练习册系列答案
相关题目
| A、25° | B、30° | C、40° | D、50° |
| A、50° | B、40° | C、25° | D、20° |