题目内容

【题目】如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=°.

【答案】125
【解析】解:∵⊙O是△ABC的内切圆,
∴OB平分∠ABC,OC平分∠ACB,
∴∠OBC= ∠ABC=35°,∠OCB= ∠ACB=20°,
∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣35°﹣20°=125°.
所以答案是125.
【考点精析】解答此题的关键在于理解圆周角定理的相关知识,掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半,以及对三角形的内切圆与内心的理解,了解三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网