题目内容
【题目】如图,∠B=90°,AB=3,BC=4,CD=12,AD=13.求四边形ABCD的面积.
【答案】36.
【解析】试题分析:连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.
试题解析:解:连接AC.如图所示:
∵∠B=90°,∴△ABC为直角三角形.又∵AB=3,BC=4,∴根据勾股定理得:AC==5.又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=ABBC+ACCD=×3×4+×5×12=36.
故四边形ABCD的面积是36.
练习册系列答案
相关题目
【题目】为了深化改革,某校积极开展校本课程建设,计划成立“文学鉴赏”“科学实验”“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):
某校被调查学生选择社团意向统计表
选择意向 | 文学鉴赏 | 科学实验 | 音乐舞蹈 | 手工编织 | 其他 |
所占百分比 | a | 35% | b | 10% | c |
根据统计图表中的信息,解答下列问题:
(1)求本次调查的学生总人数及a,b,c的值;
(2)将条形统计图补充完整.