题目内容

【题目】如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.
(1)求证:BE=DF;
(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).

【答案】
(1)解:∵四边形ABCD是平行四边形,

∴AB=CD,AB∥CD,

∴∠ABD=∠CDB,

∵AE⊥BD于E,CF⊥BD于F,

∴∠AEB=∠CFD=90°,

∴△ABE≌△CDF(AAS),

∴BE=DF;


(2)解:四边形MENF是平行四边形.

证明:由(1)可知:BE=DF,

∵四边形ABCD为平行四边形,

∴AD∥BC,

∴∠MDB=∠NBD,

∵DM=BN,

∴△DMF≌△BNE,

∴NE=MF,∠MFD=∠NEB,

∴∠MFE=∠NEF,

∴MF∥NE,

∴四边形MENF是平行四边形.


【解析】(1)根据平行四边形的性质和已知条件证明△ABE≌△CDF即可得到BE=DF;(2)根据平行四边形的判定方法:有一组对边平行且相等的四边形为平行四边形判定四边形MENF的形状.
【考点精析】本题主要考查了平行四边形的判定与性质的相关知识点,需要掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积才能正确解答此题.

涓€棰樹竴棰樻壘绛旀瑙f瀽澶參浜�
涓嬭浇浣滀笟绮剧伒鐩存帴鏌ョ湅鏁翠功绛旀瑙f瀽
绔嬪嵆涓嬭浇
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网