题目内容
【题目】如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动,几秒种后△DPQ的面积为31cm2?
【答案】运动1秒或5秒后△DPQ的面积为31cm2.
【解析】
设运动x秒钟后△DPQ的面积为31cm2,则AP=xcm,BP=(6-x)cm,BQ=2xcm,CQ=(12-2x)cm,利用分割图形求面积法结合△DPQ的面积为31cm2,即可得出关于x的一元二次方程,解之即可得出结论
解:设运动x秒钟后△DPQ的面积为31cm2,则AP=xcm,BP=(6-x)cm,BQ=2xcm,CQ=(12-2x)cm,
S△DPQ=S矩形ABCD-S△ADP-S△CDQ-S△BPQ,
=ABBC-ADAP-CDCQ-BPBQ,
=6×12-×12x-×6(12-2x)-(6-x)2x,
=x2-6x+36=31,
解得:x1=1,x2=5.
答:运动1秒或5秒后△DPQ的面积为31cm2.
练习册系列答案
相关题目