题目内容
【题目】已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GEGD.
(1)求证:∠ACF=∠ABD;
(2)连接EF,求证:EFCG=EGCB.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)先根据CG2=GEGD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根据AB∥CD得出∠ABD=∠BDC,故可得出结论;
(2)先根据∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,进而可得出结论.
试题解析:(1)∵CG2=GEGD,∴.
又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.
∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.
(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴.
又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴,∴FECG=EGCB.
练习册系列答案
相关题目