题目内容
【题目】如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD于点H.
(1)求证:CD是半圆O的切线;
(2)若DH=,求EF的长和半径OA的长.
【答案】(1)证明过程见解析;(2)EF=2-;OA=2.
【解析】试题分析:(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.
试题解析:(1)连接OB, ∵OA=OB=OC, ∵四边形OABC是平行四边形, ∴AB=OC,
∴△AOB是等边三角形, ∴∠AOB=60°, ∵∠FAD=15°, ∴∠BOF=30°, ∴∠AOF=∠BOF=30°,
∴OF⊥AB, ∵CD∥OF, ∴CD⊥AD, ∵AD∥OC, ∴OC⊥CD, ∴CD是半圆O的切线;
(2)∵BC∥OA, ∴∠DBC=∠EAO=60°, ∴BD=BC=AB, ∴AE=AD, ∵EF∥DH,∴△AEF∽△ADH,
∴, ∵DH=6﹣3, ∴EF=2﹣, ∵OF=OA, ∴OE=OA﹣(2﹣),
∵∠AOE=30°, ∴==, 解得:OA=2.
练习册系列答案
相关题目