题目内容

【题目】如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.

(1)当t=时,△PQR的边QR经过点B
(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;
(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.

【答案】
(1)1秒
(2)

解:①当0≤t≤1时,如答图1﹣1所示.

设PR交BC于点G,

过点P作PH⊥BC于点H,则CH=OP=2t,GH=PH=3.

S=S矩形OABC﹣S梯形OPGC

=8×3﹣ (2t+2t+3)×3

= ﹣6t;

②当1<t≤2时,如答图1﹣2所示.

设PR交BC于点G,RQ交BC、AB于点S、T.

过点P作PH⊥BC于点H,则CH=OP=2t,GH=PH=3.

QD=t,则AQ=AT=4﹣t,

∴BT=BS=AB﹣AQ=3﹣(4﹣t)=t﹣1.

S=S矩形OABC﹣S梯形OPGC﹣SBST

=8×3﹣ (2t+2t+3)×3﹣ (t﹣1)2

=﹣ t2﹣5t+19;

③当2<t≤4时,如答图1﹣3所示.

设RQ与AB交于点T,则AT=AQ=4﹣t.

PQ=12﹣3t,∴PR=RQ= (12﹣3t).

S=SPQR﹣SAQT

= PR2 AQ2

= (12﹣3t)2 (4﹣t)2

= t2﹣14t+28.

综上所述,S关于t的函数关系式为:

S=


(3)

解:∵E(5,0),∴AE=AB=3,

∴四边形ABFE是正方形.

如答图2,将△AME绕点A顺时针旋转90°,得到△ABM′,其中AE与AB重合.

∵∠MAN=45°,

∴∠EAM+∠NAB=45°,

∴∠BAM′+∠NAB=45°,

∴∠MAN=∠M′AN.

连接MN.在△MAN与△M′AN中,

∴△MAN≌△M′AN(SAS).

∴MN=M′N=M′B+BN

∴MN=EM+BN.

设EM=m,BN=n,则FM=3﹣m,FN=3﹣n.

在Rt△FMN中,由勾股定理得:FM2+FN2=MN2,即(3﹣m)2+(3﹣n)2=(m+n)2

整理得:mn+3(m+n)﹣9=0.①

延长NR交x轴于点S,则m=EM=RS= PQ= (12﹣3t),

∵QS= PQ= (12﹣3t),AQ=4﹣t,

∴n=BN=AS=QS﹣AQ= (12﹣3t)﹣(4﹣t)=2﹣ t.

∴m=3n,

代入①式,化简得:n2+4n﹣3=0,

解得n=﹣2+ 或n=﹣2﹣ (舍去)

∴2﹣ t=﹣2+

解得:t=8﹣2

∴若∠MAN=45°,则t的值为(8﹣2 )秒.


【解析】解:(1)△PQR的边QR经过点B时,△ABQ构成等腰直角三角形,
∴AB=AQ,即3=4﹣t,
∴t=1.
即当t=1秒时,△PQR的边QR经过点B.
【考点精析】认真审题,首先需要了解等腰直角三角形(等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°),还要掌握图形的旋转(每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.旋转的方向、角度、旋转中心是它的三要素)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网