题目内容
【题目】如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.
(1)当t=时,△PQR的边QR经过点B;
(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;
(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.
【答案】
(1)1秒
(2)
解:①当0≤t≤1时,如答图1﹣1所示.
设PR交BC于点G,
过点P作PH⊥BC于点H,则CH=OP=2t,GH=PH=3.
S=S矩形OABC﹣S梯形OPGC
=8×3﹣ (2t+2t+3)×3
= ﹣6t;
②当1<t≤2时,如答图1﹣2所示.
设PR交BC于点G,RQ交BC、AB于点S、T.
过点P作PH⊥BC于点H,则CH=OP=2t,GH=PH=3.
QD=t,则AQ=AT=4﹣t,
∴BT=BS=AB﹣AQ=3﹣(4﹣t)=t﹣1.
S=S矩形OABC﹣S梯形OPGC﹣S△BST
=8×3﹣ (2t+2t+3)×3﹣ (t﹣1)2
=﹣ t2﹣5t+19;
③当2<t≤4时,如答图1﹣3所示.
设RQ与AB交于点T,则AT=AQ=4﹣t.
PQ=12﹣3t,∴PR=RQ= (12﹣3t).
S=S△PQR﹣S△AQT
= PR2﹣ AQ2
= (12﹣3t)2﹣ (4﹣t)2
= t2﹣14t+28.
综上所述,S关于t的函数关系式为:
S= .
(3)
解:∵E(5,0),∴AE=AB=3,
∴四边形ABFE是正方形.
如答图2,将△AME绕点A顺时针旋转90°,得到△ABM′,其中AE与AB重合.
∵∠MAN=45°,
∴∠EAM+∠NAB=45°,
∴∠BAM′+∠NAB=45°,
∴∠MAN=∠M′AN.
连接MN.在△MAN与△M′AN中,
∴△MAN≌△M′AN(SAS).
∴MN=M′N=M′B+BN
∴MN=EM+BN.
设EM=m,BN=n,则FM=3﹣m,FN=3﹣n.
在Rt△FMN中,由勾股定理得:FM2+FN2=MN2,即(3﹣m)2+(3﹣n)2=(m+n)2,
整理得:mn+3(m+n)﹣9=0.①
延长NR交x轴于点S,则m=EM=RS= PQ= (12﹣3t),
∵QS= PQ= (12﹣3t),AQ=4﹣t,
∴n=BN=AS=QS﹣AQ= (12﹣3t)﹣(4﹣t)=2﹣ t.
∴m=3n,
代入①式,化简得:n2+4n﹣3=0,
解得n=﹣2+ 或n=﹣2﹣ (舍去)
∴2﹣ t=﹣2+
解得:t=8﹣2 .
∴若∠MAN=45°,则t的值为(8﹣2 )秒.
【解析】解:(1)△PQR的边QR经过点B时,△ABQ构成等腰直角三角形,
∴AB=AQ,即3=4﹣t,
∴t=1.
即当t=1秒时,△PQR的边QR经过点B.
【考点精析】认真审题,首先需要了解等腰直角三角形(等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°),还要掌握图形的旋转(每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.旋转的方向、角度、旋转中心是它的三要素)的相关知识才是答题的关键.