ÌâÄ¿ÄÚÈÝ
£¨2013•Ê¯¾°É½Çøһģ£©Èçͼ£¬°ÑÁ½¸öÈ«µÈµÄRt¡÷AOBºÍRt¡÷ECD·Ö±ðÖÃÓÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ê¹µãEÓëµãBÖغϣ¬Ö±½Ç±ßOB¡¢BCÔÚyÖáÉÏ£®ÒÑÖªµãD £¨4£¬2£©£¬¹ýA¡¢DÁ½µãµÄÖ±Ïß½»yÖáÓÚµãF£®Èô¡÷ECDÑØDA·½ÏòÒÔÿÃë
¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÔÈËÙƽÒÆ£¬ÉèƽÒƵÄʱ¼äΪt£¨Ã룩£¬¼Ç¡÷ECDÔÚƽÒƹý³ÌÖÐijʱ¿ÌΪ¡÷E¡äC¡äD¡ä£¬E¡äD¡äÓëAB½»ÓÚµãM£¬ÓëyÖá½»ÓÚµãN£¬C¡äD¡äÓëAB½»ÓÚµãQ£¬ÓëyÖá½»ÓÚµãP£¨×¢£ºÆ½Òƹý³ÌÖУ¬µãD¡äʼÖÕÔÚÏ߶ÎDAÉÏ£¬ÇÒ²»ÓëµãAÖغϣ©£®
£¨1£©ÇóÖ±ÏßADµÄº¯Êý½âÎöʽ£»
£¨2£©ÊÔ̽¾¿ÔÚ¡÷ECDƽÒƹý³ÌÖУ¬ËıßÐÎMNPQµÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ¼°tµÄÈ¡Öµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÒÔMNΪ±ß£¬ÔÚE¡äD¡äµÄÏ·½×÷Õý·½ÐÎMNRH£¬ÇóÕý·½ÐÎMNRHÓë×ø±êÖáÓÐÁ½¸ö¹«¹²µãʱtµÄÈ¡Öµ·¶Î§£®
2 |
£¨1£©ÇóÖ±ÏßADµÄº¯Êý½âÎöʽ£»
£¨2£©ÊÔ̽¾¿ÔÚ¡÷ECDƽÒƹý³ÌÖУ¬ËıßÐÎMNPQµÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ¼°tµÄÈ¡Öµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÒÔMNΪ±ß£¬ÔÚE¡äD¡äµÄÏ·½×÷Õý·½ÐÎMNRH£¬ÇóÕý·½ÐÎMNRHÓë×ø±êÖáÓÐÁ½¸ö¹«¹²µãʱtµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©Çó³öA¡¢DÁ½µãµÄ×ø±ê£¬ÇóµÃ½âÎöʽ¼´¿É£»
£¨2£©Çó³öÖ±ÏßAB¡¢BD¡¢E¡äD¡äµÄ½âÎöʽ£¬ÀûÓÃƽÒƵÄÐÔÖÊ£¬ÓÉ¡÷MQD¡ä¡×¡÷BJD£¬µÃ³öS¡÷MQD¡ä£¬±íʾ³öËıßÐÎMNPQµÄÃæ»ý£¬ÀûÓöþ´Îº¯ÊýÇóµÃ×î´óÖµ£»
£¨3£©Çó³öÕý·½ÐÎMNRHÓë×ø±êÖáÓÐÁ½¸ö¹«¹²µãʱµãHÔÚxÖáÉÏʱ£¬ÓÐM£¨t£¬4-2t£©ºá×Ý×ø±êÏàµÈÇóµÃÎÊÌâµÄ½â£®
£¨2£©Çó³öÖ±ÏßAB¡¢BD¡¢E¡äD¡äµÄ½âÎöʽ£¬ÀûÓÃƽÒƵÄÐÔÖÊ£¬ÓÉ¡÷MQD¡ä¡×¡÷BJD£¬µÃ³öS¡÷MQD¡ä£¬±íʾ³öËıßÐÎMNPQµÄÃæ»ý£¬ÀûÓöþ´Îº¯ÊýÇóµÃ×î´óÖµ£»
£¨3£©Çó³öÕý·½ÐÎMNRHÓë×ø±êÖáÓÐÁ½¸ö¹«¹²µãʱµãHÔÚxÖáÉÏʱ£¬ÓÐM£¨t£¬4-2t£©ºá×Ý×ø±êÏàµÈÇóµÃÎÊÌâµÄ½â£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâA£¨2.0£©£¬
ÓÉD£¨4£¬2£©£¬
¿ÉµÃÖ±ÏßAD½âÎöʽ£ºy=x-2£»
£¨2£©ÔÚ¡÷ECDƽÒƹý³ÌÖУ¬ËıßÐÎMNPQµÄÃæ»ý´æÔÚ×î´óÖµ£¬
ÀíÓÉÈçÏ£º
ÓÉB£¨0£¬4£©£¬
¿ÉµÃÖ±ÏßAB½âÎöʽ£ºy=-2x+4£¬
Ö±ÏßBD½âÎöʽ£ºy=-
x+4£¬J£¨1£¬2£©£®
ÔÚ¡÷ECDƽÒÆtÃëʱ£¬ÓÉ¡ÏCDF=45¡ã£¬
¿ÉµÃD¡ä£¨4-t£¬2-t£©£¬N£¨0£¬4-
t£©£¬
ÉèÖ±ÏßE¡äD¡ä½âÎöʽΪ£ºy=-
x+4-
t£¬
¿ÉµÃM£¨t£¬4-2t£©£¬
Q£¨
£¬2-t£©£¬P£¨0£¬2-t£©
ÓÉ¡÷MQD¡ä¡×¡÷BJD£¬µÃ
=(
)2£¬
¿ÉµÃS¡÷MQD¡ä=3(1-
t)2£¬
SÌÝÐÎE¡äC¡äPN=
t(2+2-
t)=-
t2+2t£¬
SËıßÐÎMNPQ=S¡÷E¡äC¡äD¡ä- S¡÷MQD¡ä- SÌÝÐÎE¡äC¡äPN
¡àµ±t=1ʱ£¬S×î´ó=
£»
£¨3£©µ±µãHÔÚxÖáÉÏʱ£¬ÓÐM£¨t£¬4-2t£©ºá×Ý×ø±êÏàµÈ£¬
¼´t=4-2t£¬
¡àt=
£¬
¡à0£¼t£¼
£®
ÓÉD£¨4£¬2£©£¬
¿ÉµÃÖ±ÏßAD½âÎöʽ£ºy=x-2£»
£¨2£©ÔÚ¡÷ECDƽÒƹý³ÌÖУ¬ËıßÐÎMNPQµÄÃæ»ý´æÔÚ×î´óÖµ£¬
ÀíÓÉÈçÏ£º
ÓÉB£¨0£¬4£©£¬
¿ÉµÃÖ±ÏßAB½âÎöʽ£ºy=-2x+4£¬
Ö±ÏßBD½âÎöʽ£ºy=-
1 |
2 |
ÔÚ¡÷ECDƽÒÆtÃëʱ£¬ÓÉ¡ÏCDF=45¡ã£¬
¿ÉµÃD¡ä£¨4-t£¬2-t£©£¬N£¨0£¬4-
3 |
2 |
ÉèÖ±ÏßE¡äD¡ä½âÎöʽΪ£ºy=-
1 |
2 |
3 |
2 |
¿ÉµÃM£¨t£¬4-2t£©£¬
Q£¨
t+2 |
2 |
ÓÉ¡÷MQD¡ä¡×¡÷BJD£¬µÃ
S¡÷MQD¡ä |
S¡÷BJD |
3-
| ||
3 |
¿ÉµÃS¡÷MQD¡ä=3(1-
1 |
2 |
SÌÝÐÎE¡äC¡äPN=
1 |
2 |
1 |
2 |
1 |
4 |
SËıßÐÎMNPQ=S¡÷E¡äC¡äD¡ä- S¡÷MQD¡ä- SÌÝÐÎE¡äC¡äPN
|
¡àµ±t=1ʱ£¬S×î´ó=
3 |
2 |
£¨3£©µ±µãHÔÚxÖáÉÏʱ£¬ÓÐM£¨t£¬4-2t£©ºá×Ý×ø±êÏàµÈ£¬
¼´t=4-2t£¬
¡àt=
4 |
3 |
¡à0£¼t£¼
4 |
3 |
µãÆÀ£º´ËÌâ×ۺϿ¼²éƽÒƵÄÐÔÖÊ£¬Èý½ÇÐÎÏàËƵÄÐÔÖÊ£¬¶þ´Îº¯ÊýµÄÐÔÖʵÈ֪ʶµã£¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿