题目内容
【题目】如图,为的直径,于点,是弧AC上的动点,连接分别交,于点,.
当时,与相等吗?为什么?
当点在什么位置时,?证明你的结论.
【答案】(1)见解析;(2)见解析.
【解析】
(1)由圆周角定理知:AB⊥AC,在Rt△ABC中,AD⊥BC,易证得∠BAD=∠C,已知PA=AB,可得∠ABE=∠C,所以∠ABE=∠BAD,即AE=BE;
(2)当AF=EF时,∠FAE=∠FEA,易得∠FAE=∠ABD,∠FEA=∠DEB,因此∠BED=∠ABD,那么它们的余角也相等,即∠FBC=∠BAD,由(1)知∠BAD=∠C,即∠FBC=∠C,那么弧PC=弧AB,因此当弧PC=弧AB时,AF=EF.
证明:∵为的直径,
∴,
又∵,
∴,
∴,
∵,
∴,
∴.
∴;
当弧弧时,,
证明:∵弧弧,
∴,
∴,
即,
∵,
∴,
∴.
【题目】佳琪同学在学习了三角形内角和及角平分线定义后经大量的测试实验发现,在一个三角形中,两个内角的角平分线所夹的角只与第三个角的大小有关.
测量数据如下表:
测量和度数 | |||
测量工具 | 量角器 | ||
示意图 | 与的平分 线交于点 | ||
测量数据 | |||
第一次 | |||
第二次 | |||
第三次 | |||
第四次 | |||
… | … |
(1)通过以上测量数据,请你写出与的数量关系:______.
(2)如图,在中,若与的平分线交于点,则与存在怎样的数量关系?请说明理由.
【题目】每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:
收集数据:
30 | 60 | 81 | 50 | 40 | 110 | 130 | 146 | 90 | 100 |
60 | 81 | 120 | 140 | 70 | 81 | 10 | 20 | 100 | 81 |
整理数据:
课外阅读平均时间x(min) | 0≤x<40 | 40≤x<80 | 80≤x<120 | 120≤x<160 |
等级 | D | C | B | A |
人数 | 3 | a | 8 | b |
分析数据:
平均数 | 中位数 | 众数 |
80 | m | n |
请根据以上提供的信息,解答下列问题:
(1)填空:a= ,b= ;m= ,n= ;
(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;
(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?