题目内容

在一个不透明的口袋里,装着只有颜色不同的白、红、黑三种颜色的小球各一个.甲先从袋中随机摸出一球,看清颜色后放回,乙再从袋中随机摸出一球.
(1)画树状图(或列表),表示甲、乙摸球的所有可能结果.
(2)求乙摸到与甲相同颜色球的概率.
【答案】分析:此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验.列举出所有情况,看乙摸到与甲相同颜色球的情况数占总情况数的多少即可.
解答:解:(1)树状图如图:

所有可能的结果有(白,白)、(白,红)、(白,黑)、(红,白)、(红,红)、(红,黑)、(黑,白)、(黑,红)、(黑,黑).(3分)

(2)P(甲、乙颜色相同)==.(5分)
点评:树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网