题目内容
【题目】如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.
(1)求证:四边形EFGH是平行四边形;
(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.
【答案】证明:(1)在平行四边形ABCD中,∠A=∠C,
又∵AE=CG,AH=CF,
∴△AEH≌△CGF.
∴EH=GF.
在平行四边形ABCD中,AB=CD,AD=BC,
∴AB﹣AE=CD﹣CG,AD﹣AH=BC﹣CF,
即BE=DG,DH=BF.
又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.
∴GH=EF.
∴四边形EFGH是平行四边形.
(2)解法一:在平行四边形ABCD中,AB∥CD,AB=CD.
设∠A=α,则∠D=180°﹣α.
∵AE=AH,∴∠AHE=∠AEH==90-. ∵AD=AB=CD,AH=AE=CG,
∴AD﹣AH=CD﹣CG,即DH=DG.
∴∠DHG=∠DGH= .
∴∠EHG=180°﹣∠DHG﹣∠AHE=90°.
又∵四边形EFGH是平行四边形,
∴四边形EFGH是矩形.
解法二:连接BD,AC.
∵AH=AE,AD=AB,
∴ =,∴HE∥BD,
同理可证,GH∥AC,
∵四边形ABCD是平行四边形且AB=AD,
∴平行四边形ABCD是菱形,
∴AC⊥BD,∴∠EHG=90°.
又∵四边形EFGH是平行四边形,
∴四边形EFGH是矩形.
【解析】(1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.
(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥BD,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由1知四边形HGFE是平行四边形,故四边形HGFE是矩形.