题目内容
【题目】在矩形ABCD中,AB=6,BC=12,点E在边BC上,且BE=2CE,将矩形沿过点E的直线折叠,点C,D的对应点分别为C′,D′,折痕与边AD交于点F,当点B,C′,D′恰好在同一直线上时,AF的长为_____.
【答案】8+或8﹣.
【解析】分析: 由折叠的性质得,∠EC′D′=∠C=90°,C′E=CE,在Rt△BC′E中,由=2,得到∠C′BE=30°,①当点C′在BC的上方时,过E作EG⊥AD于G,延长EC′交AD于H,则四边形ABEG是矩形根据等边三角形的性质和矩形的性质,即可得到AF的长;②当点C′在BC的下方时,过F作FG⊥AD于G,D′F交BE于H,同①可得四边形ABGF是矩形根据矩形的性质和等边三角形的性质,即可得到AF的长.
详解: 由折叠的性质得,∠EC′D′=∠C=90°,C′E=CE,
∵点B、C′、D′在同一直线上,
∴∠BC′E=90°,
∵BC=12,BE=2CE,
∴BE=8,C′E=CE=4,
在Rt△BC′E中,=2,
∴∠C′BE=30°,
①当点C′在BC的上方时,
如图1,过E作EG⊥AD于G,延长EC′交AD于H,则四边形ABEG是矩形,
∴EG=AB=6,AG=BE=8,
∵∠C′BE=30°,∠BC′E=90°,
∴∠BEC′=60°,
由折叠的性质得,∠C′EF=′CEF,
∴∠C′EF=∠CEF=60°,
∵AD∥BC
∴∠HFE=∠CEF=60°,
∴△EFH是等边三角形,
∴在Rt△EFG中,EG=6,
∴GF=2,
∴AF═8+2;
②当点C′在BC的下方时,
如图2,过F作FG⊥AD于G,D′F交BE于H,
同①可得,四边形ABGF是矩形,△EFH是等边三角形,
∴AF=BG,FG=AB=6,∠FEH=60°,
在Rt△EFG中,GE=2,
∵BE=8,
∴BG=82,
∴AF=82,
综上所述,AF的长是8+2或82.
故答案为:8+2或82.
点睛: 本题考查了翻折变换折叠问题,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.