题目内容
【题目】如图:在四边形ABCD中,AD∥BC,且BC=12cm,AD=18cm,P、Q分别从A、C同时出发,P以2cm/s的速度由A向D运动,Q以4cm/s的速度由C向B运动,问当多少秒时,直线QP将四边形ABCD截出一个平行四边形.
【答案】2或3秒
【解析】
此题应分两种情况讨论:①构成的是平行四边形APQB,此时BQ=AP,②构成的是平行四边形CQPD,此时CQ=PD;用时间t表示出CQ、BQ、AP、PD的长,然后根据上面的等量关系求得t的值.
设点P、Q运动的时间为t秒,依题意有:CQ=4t, BQ=12-4t,AP=2t, PD=18-2t;
∵AD∥BC,
∴①当BQ=AP时,四边形APQB是平行四边形,
即12-4t=2t,
解得t=2;
②当CQ=PD时,四边形CQPD是平行四边形,
即4t=18-2t,
解得t=3;
所以当2或3秒时,直线QP将四边形截出一个平行四边形.
【题目】对某市中学生的幸福指数进行调查,从中抽取部分学生的调查表问卷进行统计,并绘制出不完整的统计表和条形统计图。
等级 | 频数 | 频率 |
★ | 60 | |
★★ | 80 | |
★★★ | 0.16 | |
★★★★ | 0.30 | |
★★★★★ |
(1)直接补全统计表;
(2)补全条形统计图(不要求写出计算过程);
(3)抽查的学生约占全市中学生的5%,估计全市约有多少名学生的幸福指数能达到五★级?
【题目】近年来,我国很多地区持续出现雾霾天气.某社区为了调查本社区居民对雾霾天气主要成因的认识情况,随机对该社区部分居民进行了问卷调查,要求居民从五个主要成因中只选择其中的一项,被调查居民都按要求填写了问卷.社区对调查结果进行了整理,绘制了如下不完整的统计图表.被调查居民选择各选项人数统计表
雾霾天气的主要成因 | 频数(人数) |
A大气气压低,空气不流动 | m |
B地面灰尘大,空气湿度低 | 40 |
C汽车尾气排放 | n |
D工厂造成的污染 | 120 |
E其他 | 60 |
请根据图表中提供的信息解答下列问题:
(1)填空:m= , n= , 扇形统计图中C选项所占的百分比为 .
(2)若该社区居民约有6 000人,请估计其中会选择D选项的居民人数.
(3)对于“雾霾”这个环境问题,请你用简短的语言发出倡议.