题目内容

【题目】如图直线EF、CD相交于点O,OAOB,OC平分∠AOF.

(1)若∠AOE=40°,求∠BOD的度数

(2)若∠AOE=30°,请直接写出∠BOD的度数

(3)观察(1)(2)的结果猜想∠AOE和∠BOD的数量关系并说明理由.

【答案】(1)20°(2)15°(3)∠BOD=∠AOE,理由见解析。

【解析】

(1)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案;
(2)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案;

(3)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案.

解:(1)∵∠AOE+∠AOF=180°,∠AOE=40°,
∴∠AOF=140°;
又∵OC平分∠AOF,
∴∠FOC=∠AOF=70°,
∴∠EOD=∠FOC=70°;
∵OAOB, ∴∠AOB=90°

∵∠BOE=∠AOB-∠AOE=50°,
∴∠BOD=∠EOD-∠BOE=20°;

(2)∵∠AOE+∠AOF=180°,∠AOE=30°,
∴∠AOF=150°;
又∵OC平分∠AOF,
∴∠FOC=∠AOF=75°,
∴∠EOD=∠FOC=75°;
∵∠BOE=∠AOB-∠AOE=60°,
∴∠BOD=∠EOD-∠BOE=15°;

(3)从(1)(2)的结果中能看出∠BOD=∠AOE,理由如下:

∵∠AOE+∠AOF=180°,
∴∠AOF=180°-∠AOE;
又∵OC平分∠AOF,
∴∠FOC=∠AOF=90°-∠AOE,
∴∠EOD=∠FOC=90°-∠AOE;
∵OAOB, ∴∠AOB=90°

∵∠BOE=∠AOB-∠AOE=90°-∠AOE,
∴∠BOD=∠EOD-∠BOE=(90°-∠AOE)-(90°-∠AOE)=∠AOE;

∴∠BOD=∠AOE;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网