题目内容
在一个不透明的口袋里装有3个红球和2个黑球,这些球除了颜色以外都相同.如果从混合均匀的袋中任意摸出一个球,那么摸到黑球的概率是________.
分析:让黑球的个数除以球的总数即为所求的概率.
解答:因为口袋里装有3个红球和2个黑球,共3+2=5个球,其中2个黑球,
所以任意摸出一个球,那么摸到黑球的概率是=.
点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
练习册系列答案
相关题目
在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据
(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)试估算口袋中黑、白两种颜色的球有多少只.
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 | ||
摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 | ||
摸到白球的频率
|
0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(2)假如你去摸一次,你摸到白球的概率是
(3)试估算口袋中黑、白两种颜色的球有多少只.