题目内容
【题目】如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处.当为直角三角形时,则的长为________.
【答案】或
【解析】
当△CB′E为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8-x,然后在Rt△CEB′中运用勾股定理可计算出x.再在Rt△ABE中,利用勾股定理可得AE的长
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.可得AB=BE,在Rt△ABE中,利用勾股定理可得AE的长.
解:当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,在Rt△ABC中,AB=6,BC=8,
∴AC=10,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=6,
∴CB′=10-6=4;
设BE=,则EB′=,CE=
在Rt△CEB′中,由勾股定理可得:,
解得:
在Rt△ABE中,利用勾股定理可得:
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,
∴BE=AB=6,
∴在Rt△ABE中,利用勾股定理可得:
综上所述,的长为或
故答案为:或
【题目】某剧院的观众席的座位为扇形,且按下列分式设置:
排数(x) | 1 | 2 | 3 | 4 | … |
座位数(y) | 50 | 53 | 56 | 59 | … |
(1)按照上表所示的规律,当x每增加1时,y如何变化?
(2)写出座位数y与排数x之间的关系式;
(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.