题目内容

已知⊙O的直径AB与弦AC的夹角为30°,过点C的切线PC与AB的延长线交于P.PC=5,则⊙O的半径为(  )
A、
5
3
6
B、
5
3
3
C、5
D、10
分析:如图,连接OC,得到∠OCP=90°.由OA=OC可以得到∠ACO=∠A=30°,进一步得到∠COP=60°,∠P=30°,然后利用三角函数求解.
解答:精英家教网解:如图,连接OC.
∵PC是圆的切线,
∴∠OCP=90°.
∵OA=OC,
∴∠ACO=∠A=30°.
∴∠COP=60°,∠P=30°.
∴OC=PCtan30°=
5
3
3

故选B.
点评:本题主要考查了切线的性质和直角三角形的三角函数求解,关键是连接OC构造直角三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网