题目内容
【题目】如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )
A、 B、 C、 D、
【答案】B.
【解析】
试题由折叠的性质可得,∠EDF=∠C=60,CE=DE,CF=DF.再由∠BDF+∠ADE=∠BDF+∠BFD=120,可得∠ADE=∠BFD,又因∠A=∠B=60,根据两角对应相等的两三角形相似可得△AED∽△BDF,所以,设AD=a,BD=2a,AB=BC=CA=3a,再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,
所以,整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即,故答案选B.
【题目】甲、乙两人在5次打靶测试中命中的环数如下:
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填写下表:
平均数 | 众数 | 中位数 | 方差 | |
甲 | 8 | | 8 | 0.4 |
乙 | | 9 | | 3.2 |
(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 .(填“变大”、“变小”或“不变”).
【题目】探究函数的图象与性质.
(1)下表是y与x的几组对应值.
… | … | ||||||||
… | … |
其中m的值为_______________;
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并已画出了函数图象的一部分,请你画出该图象的另一部分;
(3)结合函数的图象,写出该函数的一条性质:_____________________________;
(4)若关于x的方程有2个实数根,则t的取值范围是___________________.