题目内容
如下图1,点E是线段BC的中点,分别以B,C为直角顶点的△EAB和△EDC均是等腰直角三角形,且在BC的同侧.
(1)AE和ED的数量关系为________,AE和ED的位置关系为________;
(2)在图1中,以点E为位似中心,作△EGF与△EAB位似,点H是BC所在直线上的一点,连接GH,HD,分别得到了图2和图3;
①在图2中,点F在BE上,△EGF与△EAB的相似比是1∶2,H是EC的中点.求证:GH=HD,GH⊥HD.
②在图3中,点F在BE的延长线上,△EGF与△EAB的相似比是k∶1,若BC=2,请直接写出CH的长为多少时,恰好使得GH=HD且GH⊥HD(用含k的代数式表示).
答案:
解析:
解析:
解:(1)
;2分
(2)①证明:由题意,![]()
位似且相似比是
,
![]()
.
![]()
![]()
;5分
![]()
又
.
![]()
;7分
②
的长为
;9分
练习册系列答案
相关题目