题目内容
【题目】已知关于x的二次函数的图象与x轴有2个交点.
(1)求k的取值范围;
(2)若图象与x轴交点的横坐标为,且它们的倒数之和是,求k的值.
【答案】(1)k<- ;(2)k=﹣1
【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b2-4ac的范围可求解出k的值;
(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k的值.
试题解析:(1)∵二次函数y=x2-(2k-1)x+k2+1的图象与x轴有两交点,
∴当y=0时,x2-(2k-1)x+k2+1=0有两个不相等的实数根.
∴△=b2-4ac=[-(2k-1)]2-4×1×(k2+1)>0.
解得k<- ;
(2)当y=0时,x2-(2k-1)x+k2+1=0.
则x1+x2=2k-1,x1x2=k2+1,
∵=== ,
解得:k=-1或k= (舍去),
∴k=﹣1
练习册系列答案
相关题目