题目内容
【题目】关于x的二次函数y=2sinx2-(4sin+)x-sin+,其中为锐角,则:①当a为30°时,函数有最小值﹣;②函数图象与坐标轴可能有三个交点,并且当a为45°时,连接这三个交点所围成的三角形面积小于1;③当a<60°时,函数在x>1时,y随x的增大而增大;④无论锐角a怎么变化,函数图象必过定点.其中正确的结论有( )
A. ①② B. ①②③ C. ①②④ D. ②③④
【答案】C
【解析】
①由于2sin>0,所以函数一定有最小值,将a的值代入抛物线的解析式中,将解析式写成顶点式可得函数的最小值.
②令y=0,在所得方程中若根的判别式大于0,那么抛物线的图象与坐标轴的交点可能有三个:与x轴有两个交点,与y轴有一个交点;当抛物线经过原点时,抛物线的图象与坐标轴只有两个交点.首先将a的值代入解析式,先设抛物线与x轴的两个交点横坐标为x1、x2,那么这两点间的距离可表示为|x1-x2|=,以这条线段为底,抛物线与y轴交点纵坐标的绝对值为高即可得到三交点围成的三角形的面积值,然后判断是否小于1即可.
③由①知,抛物线的开口向上,所以一定有最小值;首先求出抛物线的对称轴方程,若x=1在抛物线对称轴右侧,那么y随x的增大而增大;若x=1在抛物线对称轴的左侧,那么随x的增大,y值先减小后增大.
④图象若过定点,那么函数值就不能受到变量sina的影响,所以先将所有含sina的项拿出来,然后令sina的系数为0,可据此求出x的值,将x的值代入抛物线的解析式中,即可得到这个定点的坐标.
解:①当a=30°时,sina=,二次函数解析式可写作:y=x2-x=(x-)2-;
所以当a为30°时,函数的最小值为-;故①正确.
②令y=0,则有:2sinax2-(4sina+)x-sina+=0,
△=(4sina+)2-4·2sina·(-sina+)=24sin2a+>0,
所以抛物线与x轴一定有两个交点,再加上抛物线与y轴的交点,即与坐标轴可能有三个交点(当图象过原点时,只有两个交点);
设抛物线与x轴的交点为(x1,0)、(x2,0);
当a=45°时,sina=,得:y=x2-(2+)x-,则:
三角形的面积 S===≈0.3<1
故②正确.
③∵2sina>0,且对称轴x==1+>1,
∴x=1在抛物线对称轴的左侧,因此 x>1时,y随x的增大先减小后增大;
故③错误.
④y=2sinax2-(4sina+12)x-sina+=sina(2x2-4x-1)-x+;
当2x2-4x-1=0,即 x=1±时,抛物线经过定点,且坐标为:(1+,-)、(1-,);
故④正确.
综上,正确的选项是①②④
故本题答案选C.
【题目】某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:
销售单价x(元/件) | … | 55 | 60 | 70 | 75 | … |
一周的销售量y(件) | … | 450 | 400 | 300 | 250 | … |
(1)直接写出y与x的函数关系式: .
(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?
(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?