题目内容

【题目】有一块形状为四边形的钢板,量得它的各边长度为AB=9cm,BC=12cm,CD=17cm,DA=8cm,∠B=90°.求这块钢板的面积.

【答案】解:连接AC,在RT△ABC中,AC= =15,在△ADC中,AD=8cm,CD=17cm,
则AC2+AD2=DC2
故可得△ADC为直角三角形,
这块钢板的面积=SABC+SADC= AB×BC+ AD×AC=54+60=114
【解析】连接AC,在RT△ABC中,利用可勾股定理可得出AC,利用勾股定理的逆定理可判断△ADC是直角三角形,分别求出两个直角三角形的面积相加即可.
【考点精析】通过灵活运用勾股定理的概念和勾股定理的逆定理,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网