题目内容

(2012•黄陂区模拟)如图所示,△ABC是⊙O的内接正三角形,四边形DEFG是⊙O的内接正方形,EF∥BC,则∠AOF为(  )
分析:由⊙O是△ABC的外接圆可知AO⊥BC,根据EF∥BC,四边形DEFG是正方形可知DG∥EF,故AO⊥DG,故AO是DG的垂直平分线,故可求出∠AOG的度数,由圆内接正多边形的性质求出∠GOF的度数,进而可得出结论.
解答:解:连接OG,
∵⊙O是△ABC的外接圆,
∴AO⊥EF,
∵EF∥BC,
∴AO⊥EF,
∵四边形DEFG是正方形,
∴DG∥EF,
∴AO⊥DG,
∴AO是DG的垂直平分线,
∴∠AOG=360°×
1
8
=45°,
∵四边形DEFG是正方形,
∴∠GOF=90°,
∴∠AOF=∠AOG+∠GOF=45°+90°=135°.
故选C.
点评:本题考查的是正多边形和圆,根据题意作出辅助线,得出AO是DG的垂直平分线是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网