题目内容
【题目】已知关于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若原方程的两个实数根为x1、x2, 且满足x12+x22=|x1|+|x2|+2x1x2,求m的值.
【答案】(1)m>2;(2)m=3.
【解析】试题分析:(1)由方程有两个不相等的实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出m的取值范围;
(2)根据根与系数的关系即可得出x1+x2=2(m+1)、x1x2=m2+5,结合m的取值范围即可得出x1>0、x2>0,再由x12+x22=|x1|+|x2|+2x1x2即可得出6m﹣18=0,解之即可得出m的值.
试题解析:(1)解:∵方程x2﹣2(m+1)x+m2+5=0有两个不相等的实数根, ∴△=[﹣2(m+1)]2﹣4(m2+5)=8m﹣16>0,
解得:m>2.
(2)解:∵原方程的两个实数根为x1、x2 , ∴x1+x2=2(m+1),x1x2=m2+5.
∵m>2,
∴x1+x2=2(m+1)>0,x1x2=m2+5>0,
∴x1>0、x2>0.
∵x12+x22= ﹣2x1x2=|x1|+|x2|+2x1x2 ,
∴4(m+1)2﹣2(m2+5)=2(m+1)+2(m2+5),即6m﹣18=0,
解得:m=3.
练习册系列答案
相关题目