题目内容

【题目】已知关于x的一元二次方程:x2﹣2m+1x+m2+5=0有两个不相等的实数根.

(1)求m的取值范围;

(2)若原方程的两个实数根为x1x2, 且满足x12+x22=|x1|+|x2|+2x1x2,求m的值.

【答案】1m2;(2m3.

【解析】试题分析:(1)由方程有两个不相等的实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出m的取值范围;

(2)根据根与系数的关系即可得出x1+x2=2(m+1)、x1x2=m2+5,结合m的取值范围即可得出x1>0、x2>0,再由x12+x22=|x1|+|x2|+2x1x2即可得出6m﹣18=0,解之即可得出m的值.

试题解析:(1)解:∵方程x2﹣2(m+1)x+m2+5=0有两个不相等的实数根, ∴△=[﹣2(m+1)]2﹣4(m2+5)=8m﹣16>0,

解得:m>2.

(2)解:∵原方程的两个实数根为x1、x2 , ∴x1+x2=2(m+1),x1x2=m2+5.

∵m>2,

∴x1+x2=2(m+1)>0,x1x2=m2+5>0,

∴x1>0、x2>0.

∵x12+x22= ﹣2x1x2=|x1|+|x2|+2x1x2

∴4(m+1)2﹣2(m2+5)=2(m+1)+2(m2+5),即6m﹣18=0,

解得:m=3.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网