题目内容
【题目】如图,点C是线段AB上一点,△ACD和△BCE都是等边三角形,连结AE,BD,设AE交CD于点F.
(1)求证:△ACE≌△DCB;
(2)求证:△ADF∽△BAD.
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:有两组边对应相等,并且它们所夹的角也相等,那么这两个三角形全等;有两组角分别相等,且其中一组角所对的边对应相等,那么这两个三角形全等;全等三角形的对应边相等,对应角相等.
(1)根据全等三角形的判定定理SAS证得结论;
(2)利用(1)中全等三角形的对应角相等,平行线的判定与性质以及两角法证得结论.
解:(1)∵△ACD和△BCE都是等边三角形,
∴AC=CD,CE=CB,∠ACD=∠BCE=60°
∴∠ACE=∠DCB=120°.
∴△ACE≌△DCB(SAS);
(2)∵△ACE≌△DCB,
∴∠CAE=∠CDB.
∵∠ADC=∠CAD=∠ACD=∠CBE=60°,
∴DC∥BE,
∴∠CDB=∠DBE,
∴∠CAE=∠DBE,
∴∠DAF=∠DBA.
∴△ADF∽△BAD.
练习册系列答案
相关题目