题目内容
【题目】在平面直角坐标系中,我们定义直线为抛物线(、、为常数,)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在轴上的三角形为其“梦想三角形”.
已知抛物线与其“梦想直线”交于、两点(点在点的左侧),与轴负半轴交于点.
(1)填空:该抛物线的“梦想直线”的解析式为 ,点的坐标为 ,点的坐标为 ;
(2)如图,点为线段上一动点,将以所在直线为对称轴翻折,点的对称点为,若为该抛物线的“梦想三角形”,求点的坐标;
(3)当点在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点,使得以点、、、为顶点的四边形为平行四边形?若存在,请直接写出点、的坐标;若不存在,请说明理由.
【答案】(1),(﹣2,),(1,0);(2)(0,﹣3)或(0,+3);(3)存在,E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).
【解析】
试题分析:(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B的坐标;
(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N点坐标;
(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.
试题解析:(1)∵抛物线,
∴其梦想直线的解析式为,
联立梦想直线与抛物线解析式可得,解得或,
∴A(﹣2,),B(1,0),
故答案为:,(﹣2,),(1,0);
(2)如图1,过A作AD⊥y轴于点D,
在中,令y=0可求得x=﹣3或x=1,
∴C(﹣3,0),且A(﹣2,),
∴,
由翻折的性质可知AN=AC=,
∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,
在Rt△AND中,由勾股定理可得DN=,
∵OD=,∴ON=﹣3或ON=+3,
∴N点坐标为(0,﹣3)或(0,+3);
(3)①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,
则有AC∥EF且AC=EF,
∴∠ACK=∠EFH,
在△ACK和△EFH中
∴△ACK≌△EFH(AAS),∴FH=CK=1,HE=AK=,
∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,
∵点F在直线AB上,
∴当F点横坐标为0时,则F(0,),此时点E在直线AB下方,
∴E到y轴的距离为EH﹣OF=﹣=,即E点纵坐标为﹣,
∴E(﹣1,﹣);
当F点的横坐标为﹣2时,则F与A重合,不合题意,舍去;
②当AC为平行四边形的对角线时,
∵C(﹣3,0),且A(﹣2,),
∴线段AC的中点坐标为(﹣2.5,),
设E(﹣1,t),F(x,y),
则x﹣1=2×(﹣2.5),y+t=,
∴x=﹣4,y=﹣t,
代入直线AB解析式可得﹣t=﹣×(﹣4)+,解得t=﹣,
∴E(﹣1,﹣),F(﹣4,);
综上可知存在满足条件的点F,此时E(﹣1,﹣)、F(0,)或E(﹣1,﹣)、F(﹣4,).