题目内容
(2012•朝阳)在不透明的箱子里放有4个乒乓球,每个乒乓球上分别写有数字1、2、3、4,从箱中摸出一个球记下数字后放回箱中,摇匀后再摸出一个记下数字.若将第一次摸出的球上的数字记为点的横坐标,第二次摸出球上的数字记为
点的纵坐标.
(1)请用列表法或树状图法写出两次摸球后所有可能的结果.
(2)求这样的点落在如图所示的圆内的概率(注:图中圆心在直角坐标系中的第一象限内,并且分别于x轴、y轴切于点(2,0)和(0,2)两点).
![](http://thumb.zyjl.cn/pic3/upload/images/201209/2/508837db.png)
(1)请用列表法或树状图法写出两次摸球后所有可能的结果.
(2)求这样的点落在如图所示的圆内的概率(注:图中圆心在直角坐标系中的第一象限内,并且分别于x轴、y轴切于点(2,0)和(0,2)两点).
分析:(1)首先根据题意列出表格,然后由表格即可求得所有等可能的结果;
(2)根据(1)中的表格求得这样的点落在如图所示的圆内的情况,然后利用概率公式求解即可求得答案.
(2)根据(1)中的表格求得这样的点落在如图所示的圆内的情况,然后利用概率公式求解即可求得答案.
解答:解:列表得:
则共有16种等可能的结果;
(2)∵这样的点落在如图所示的圆内的有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),
∴这样的点落在如图所示的圆内的概率为:
.
第一次 第二次 |
1 | 2 | 3 | 4 |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | (3,2) | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
(2)∵这样的点落在如图所示的圆内的有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),
∴这样的点落在如图所示的圆内的概率为:
9 |
16 |
点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目