题目内容
【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山上升的速度是每分钟 米,乙在A地时距地面的高度b为 米.
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.
(3)登山多长时间时,甲、乙两人距地面的高度差为50米?
【答案】(1)10;30
(2)乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=.
(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.
【解析】(1)(300﹣100)÷20=10(米/分钟),
b=15÷1×2=30.
故答案为:10;30.
(2)当0≤x≤2时,y=15x;
当x≥2时,y=30+10×3(x﹣2)=30x﹣30.
当y=30x﹣30=300时,x=11.
∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=.
(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).
当10x+100﹣(30x﹣30)=50时,解得:x=4;
当30x﹣30﹣(10x+100)=50时,解得:x=9;
当300﹣(10x+100)=50时,解得:x=15.
答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.
练习册系列答案
相关题目