题目内容
【题目】在一次数学测验中,八年级(1)班的成绩如下表:
分数 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
人数 | 2 | 3 | 10 | 6 | 4 | 7 | 6 | 2 |
(1)本次数学测验成绩的平均数,中位数,众数各是多少?
(2)若老师把人数中的数据“10”看成了“9”,数据“7”看成了“8”,则平均数,中位数,众数中不受影响的是________.
【答案】(1)平均数:82.75分;中位数:80分;众数:75分;(2)众数.
【解析】
(1)先求出总人数为40人,再将分数乘以对应的人数的结果相加得到总分数,除以总人数即可得到平均数,将数据按照从小到大的顺序排列,一共有40个数,位于第20,第21的数的平均数即为中位数,出现次数最多的数是75分,即可得到众数;
(2)数据改变后依次分析求出三种数据,即可得到答案.
解:(1)八年级(1)班总人数(人),
本次数学测验成绩的平均数
(分),
表格中数据已经按照从小到大的顺序排列,一共有40个数,位于第20,第21的数都是80,
所以中位数是(分)
75出现了10次,次数最多,所以众数是75分.
(2)∵老师把人数中的数据“10”看成了“9”,数据“7”看成了“8”,
∴平均数=,
∴平均数发生了变化,
∵老师把人数中的数据“10”看成了“9”,数据“7”看成了“8”,
∴当数据从小到答重新排列后,第20个数据是80,第21个数据是85,
∴中位数=82.5,发生了变化;
∵老师把人数中的数据“10”看成了“9”,数据“7”看成了“8”,
∴出现次数最多的数据还是75,
∴众数不发生变化,
故答案为:众数.
【题目】某学校在A、B两个校区各有九年级学生200人,为了解这两个校区九年级学生的教学学业水平的情况,进行了抽样调查,过程如下,请补充完整.
收集数据:从A、B两个校区各随机抽取20名学生,进行了数学学业水平测试,测试成绩(百分制)如下:
A校区 86 74 78 81 76 75 86 70 75 90
75 79 81 70 74 80 87 69 83 77
B校区 80 73 70 82 71 82 83 93 77 80
81 93 81 73 88 79 81 70 40 83
整理、描述数据 按如下分数段整理、描述这两组样本数据:
成绩x 人数 校区 | 40≤x<50 | 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x≤100 |
A | 0 | 0 | 1 | 11 | 7 | 1 |
B |
(说明:成绩80分及以上的学业水平优秀,70﹣79分为淡定业水平良好,60﹣69分为学业水平合格,60分以下为学业水平不合格)
分析数据 两组样本数据的平均数、中位数、众数如下表所示:
校区 | 平均数 | 中位数 | 众数 |
A | 78.3 | m | 75 |
B | 78 | 80.5 | 81 |
其中m= ;
得出结论:a.估计B校区九年级数学学业水平在优秀以上的学生人数为 ;
b.可以推断出 校区的九年级学生的数学学业水平较高,理由为 (至少从两个不同的角度说明推断的合理性).
【题目】目前“微信”以其颠覆性的创新,赢得了数亿人的支持,为了调查某中学学生在周日上“微信”的时间,随机对100名男生和100名女生进行了问卷调查,得到了如下的统计结果
表1:男生上“微信时间的频数分布表
上网时间(分钟) | 30≤x<40 | 40≤x<50 | 50≤x<60 | 60≤x<70 | 70≤x<80 |
人数 | 5 | 25 | 30 | 25 | 15 |
表2:女生上“微信”时间的频数分布表
上网时间(分钟) | 30≤x<40 | 40≤x<50 | 50≤x<60 | 60≤x<70 | 70≤x<80 |
人数 | 10 | 20 | 40 | 20 | 10 |
请结合图表完成下列各题
(1)完成表3:
表3 | 上“微信”时间少于60分钟 | 上“微信”时间不少于60分钟 |
男生人数 |
|
|
女生人数 |
|
|
(2)若该中学共有女生750人,请估计其中上“微信”时间不少于60分钟的人数;
(3)从表3的男生中抽取5人(其中3人上“微信”时间少于60分钟,2人上“微信”时间不少于60分钟),再从抽取的5人中任取2人,请用列表或画树状图的方法求出至少有一人上“微信”时间不少于60分钟的概率.