题目内容

12、如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为(  )
分析:由旋转前后的对应角相等可知,∠DFC=∠BEC=60°;一个特殊三角形△ECF为等腰直角三角形,可知∠EFC=45°,把这两个角作差即可.
解答:解:∵△BCE绕点C顺时针方向旋转90°得到△DCF,
∴CE=CF,∠DFC=∠BEC=60°,∠EFC=45°,
∴∠EFD=60°-45°=15°.
故选B.
点评:本题考查旋转的性质和正方形的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网