题目内容

阅读下面的问题,并解答题(1)和题(2)。
如图①所示,P是等腰△ABC的底边BC上任一点,PE⊥AB于E,PF⊥AC于F,BH是腰AC上的高。求证:PE+PF=BH。
证明:连接AP,则有S△ABC=S△ABP+S△ACP 
AC×BH=AC×PF+AB×PE
因为AB=AC,所以BH=PE+PF
按照上述证法或用其它方法证明下面两题:
(1)如图②,P是边长为2的正方形ABCD边CD上任意一点,且PE⊥DB于E,PF⊥CA于F,求PE+PF的值。
(2)如图③,在△ABC中,∠A=90°,D是AB上一点,且BD=CD,过BC上任一点P做PE⊥AB于E,PF⊥DC于F,已知AD:BD=1:3,BC= 4,求PE+PF的值。
解:(1)在△BOC中,∠COB=90°,BC=2,CO=BO


(2)如图,连结PD,由面积关系得:


由题意得


下面求AC的值:设AD=x,则BD=CD=3x



解得:x1=2,x2= -2(舍去)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网