题目内容
【题目】如图,二次函数y=+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.
(1)b= ;点D的坐标: ;
(2)线段AO上是否存在点P(点P不与A、O重合),使得OE的长为1;
(3)在x轴负半轴上是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.
【答案】(1)1;(﹣3,4);(2)线段AO上不存在点P(点P不与A、O重合),使得OE的长为1 ;(3).
【解析】
试题分析:(1)利用点在二次函数图象上,代入即可求得b,将二次函数换成交点式,即能得出B点的坐标,由AD=AB可算出D点坐标;
(2)假设存在,由DP⊥AE,找出∠EPO=∠PDA,利用等角的正切相等,可得出一个关于OP长度的一元二次方程,由方程无解可得知不存在这样的点;
(3)利用角和边的关系,找到全等,再利用三角形相似,借助相似比即可求得AM,求出△ADM的面积即是所求.
试题解析:(1)∵点A(﹣3,0)在二次函数y=+bx﹣的图象上,
∴0=﹣3b﹣,解得b=1,
∴二次函数解析式为y=+x﹣=(x+3)(x﹣1),
∴点B(1,0),AB=1﹣(﹣3)=4,
∵四边形ABCD为正方形,
∴AD=AB=4,
∴点D(﹣3,4),
故答案为:1;(﹣3,4).
(2)直线PE交y轴于点E,如图1,
假设存在点P,使得OE的长为1,设OP=a,则AP=3﹣a,
∵DP⊥AE,∠APD+∠DPE+∠EPO=180°,
∴∠EPO=90°﹣∠APD=∠ADP,
tan∠ADP==,tan∠EPO==,
∴=,即﹣3a+4=0,
△=﹣4×4=﹣7<0,无解,
故线段AO上不存在点P(点P不与A、O重合),使得OE的长为1.
(3)假设存在这样的点P,DE交x轴于点M,如图2,
∵△PED是等腰三角形,
∴DP=PE,
∵DP⊥PE,四边形ABCD为正方形
∴∠EPO+∠APD=90°,∠DAP=90°,∠PAD+∠APD=90°,
∴∠EPO=∠PDA,∠PEO=∠DPA,
在△PEO和△DAP中,
∠EPO=∠PDA,DP=PE,∠PEO=∠DPA,
∴△PEO≌△DAP,
∴PO=DA=4,OE=AP=PO﹣AO=4﹣3=1,
∴点P坐标为(﹣4,0).
∵DA⊥x轴,
∴DA∥EO,
∴∠ADM=∠OEM(两直线平行,内错角相等),
又∵∠AMD=∠OME(对顶角),
∴△DAM∽EOM,
∴,
∵OM+MA=OA=3,
∴MA=×3=,
△PED与正方形ABCD重叠部分△ADM面积为×AD×AM=×4×=.
答:存在这样的点P,点P的坐标为(﹣4,1),此时△PED与正方形ABCD重叠部分的面积为.