题目内容

如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.

(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.

(1)由题知:
a+b+3=0
9a-3b+3=0

解得:
a=-1
b=-2

∴所求抛物线解析式为:
y=-x2-2x+3;

(2)∵抛物线解析式为:
y=-x2-2x+3,
∴其对称轴为x=
-2
2
=-1,
∴设P点坐标为(-1,a),当x=0时,y=3,
∴C(0,3),M(-1,0)
∴当CP=PM时,(-1)2+(3-a)2=a2,解得a=
5
3

∴P点坐标为:P1(-1,
5
3
);
∴当CM=PM时,(-1)2+32=a2,解得a=±
10

∴P点坐标为:P2(-1,
10
)或P3(-1,-
10
);
∴当CM=CP时,由勾股定理得:(-1)2+32=(-1)2+(3-a)2,解得a=6,
∴P点坐标为:P4(-1,6)
综上所述存在符合条件的点P,其坐标为P(-1,
10
)或P(-1,-
10

或P(-1,6)或P(-1,
5
3
);

(3)过点E作EF⊥x轴于点F,设E(a,-a2-2a+3)(-3<a<0)
∴EF=-a2-2a+3,BF=a+3,OF=-a
∴S四边形BOCE=
1
2
BF•EF+
1
2
(OC+EF)•OF
=
1
2
(a+3)•(-a2-2a+3)+
1
2
(-a2-2a+6)•(-a)
=-
3
2
a2-
9
2
a+
9
2

=-
3
2
(a+
3
2
)2
+
63
8

∴当a=-
3
2
时,S四边形BOCE最大,且最大值为
63
8

此时,点E坐标为(-
3
2
15
4
).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网